x^2+x-18=-12

Simple and best practice solution for x^2+x-18=-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+x-18=-12 equation:



x^2+x-18=-12
We move all terms to the left:
x^2+x-18-(-12)=0
We add all the numbers together, and all the variables
x^2+x-6=0
a = 1; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·1·(-6)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5}{2*1}=\frac{-6}{2} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5}{2*1}=\frac{4}{2} =2 $

See similar equations:

| m/8=3/5 | | 4(y-9)=-9y+29 | | -7(x+2)=-6x-3 | | 6=8/m | | -7(×+2)=-6x-3 | | X2+y2=8 | | (x^2+112)(16x+131)=0 | | 3y^2-8y-15=0 | | 7x+12=7x+9 | | 1/2t8=1 | | (x^2+112)+(16x+131)=0 | | 2y^2-15-5y=y2-3y | | 3^4x=31 | | (x^2+112)=(16x+131)+0 | | 9-2n=8 | | ((9t+1)/8)=((t+6)/16)+((t-4)/16) | | 7(x-2=5(x+4) | | 8•x+10+2x+4•x+8-6=2(7x+18) | | 19m-13m-3=-15 | | ((3x+15)/7)+((x+14)/4)=7 | | 7(x-2=5x | | 4.6+1.9n=0.04 | | 1+3n+4=-10 | | 34r=3.14 | | Y=1.9x+56 | | ((x-9)/5)+(9/5)=-(x/7) | | 8(3x-5)=17+2(x+9) | | 2(2y-7)-3y=0 | | 4c-c=10 | | -14=-2x+8 | | 2x^2-6x+9=369 | | X-a=7 |

Equations solver categories